-

- . i & "

» l.’

use y = True
L= Fa

use x = False

use y = False

use_z = True

at the end -add back the deselected mirro
=l
ect=1

ne.objects.active = modifier_ob -

" + str(modifier_ob)) # modifier ob is the actiye
select = 9

Sl 8 e a1 0)
e R T)

LR RN N R

[RT T i b

WHITEPAPF

Software
Engineering: A

Practical Guide to

Modernization

There are several reasons that software

engineering processes break down or
don't optimally perform.

RK®N

Software engineering is critical for innovation, which spurs
business value such as improved customer satisfaction, greater
employee productivity, higher operational efficiency, lower
operational costs, and additional revenues from new products or
services.

However, sometimes enterprises don't evolve their engineering
processes to keep up with modern software development. This can
cause significant problems — from technical debt to margin
erosion and revenue losses.

That said, you don't necessarily have to rip and replace your entire
software engineering practice. There are course corrections that
will allow your enterprise to modernize and streamline.

Delve into this content to discover:
e The challenges holding back software engineering teams from
being able to accelerate innovation
e The potential effects of inaction
e Three solution areas where organizations can make an impact
e How the right IT partner can help

19909 7| ‘'0be2IYD ‘OSH# 1S UOSIa[al S 87%

00$£0-%59 (ZLg) Wod*uoX4

What's Holding Back Software Innovation?

There are several reasons that software engineering processes
break down or don't optimally perform. Here are three areas where
practices tend to bottleneck or cause issues for the enterprise:

1- Ad Hoc Software Development

This scenario may seem familiar: Software teams are given the
application and business requirements, then design and code the
software. They test it to a certain degree, and then deploy it. In
other words, testing happens once, and any issues that arise after
deployment are dealt with as they occur.

The problem with this ad-hoc approach is the significant potential
for any one or all of the following: partial implementations,
misconfigurations, and unstable and unscalable software. Testing
should be embedded throughout the development life cycle, at
every phase.

19909 I ‘0Be2IYD ‘OSH# 1S UOSIayalr S 8¢
00$£0-%59 (ZLg) Wod*uoX4

2 - Falling Short in Quality Assurance (QA)

Even those companies that test code throughout each
development phase sometimes don't follow through with
comprehensive QA testing.

It should run in parallel with development and the code should be
verified by third parties, such as the International Standard
Organization (ISO) quality standards.

Any shortfalls in the QA process can result in security
vulnerabilities, bugs, or defects in the code. If these issues make it
through deployment, the enterprise runs the risk of these holes
being exploited by cyber-attackers or the software running at less
than optimal performance.

3 - Not Taking Full Advantage of Tools

Companies increasingly using DevOps methodology to gain faster
time to market, improved security, and greater code quality. There
are multiple tools within the DevOps toolbox, however, many
companies only use a handful of them or don't fully understand
which tools are best for their purposes.

For example, they might adopt continuous integration tools like
Jenkins or GitLab, as well as security tools for scanning and
vulnerability assessment.

RK®N

9909 7| ‘0Be2IYD ‘0SH# 1S UOSIalar S 8Z¢
00$£0-%59 (ZLg) Wod*uoX4

However, they might not use collaboration tools like Slack or
Teams, which enable rapid communication among teams.
Although your software engineers may not need every DevOps
tool, it's important to understand all the possibilities and benefits.
Avoiding the use of some tools — whether for cost or cultural
reasons — can cause inefficiencies and software vulnerabilities.
Why would enterprises not update their software engineering
practices or take full advantage of toolsets? They may think it's too
costly to invest in software tools, or that quick fixes or bolted-on
solutions are sufficient ways to deal with software issues after
deployment.

Sometimes workforce issues are at play. Companies might not
have the right skillsets or expertise and are doing the best they can
with what they have, yet still fall short. In other cases, there is
cultural resistance to change. Even though DevOps initially came
to market in 2007 or 2008, it took years for large enterprises like
Amazon to embrace the methodology. Smaller companies may
still not know enough about DevOps to adopt it.

Another issue is simply not realizing there's a software engineering
problem. Processes may be working “well enough.”

It may take a misconfiguration or vulnerability for teams to realize
their practices are not streamlined.

RK®N

19909 7| ‘06e2IYD ‘0S¥ # 1S UOSIa|ar S 87¢
00$£0-%59 (ZLg) Wod*uoX4

The Effects of Inaction

No matter the reason for process breakdowns or legacy
approaches to software engineering, they all lead to a much more
significant problem: technical debt.

This occurs when the costs to fix an issue continue rising and then
start creating even bigger problems. Tech debt slows down the
enterprise because it hinders the software development cycle,
threatening the pace of innovation and business growth. In
addition, companies are subject to other multiple risks:

Increasing costs to implement new product features
Customer frustration from sluggish app performance The
potential for security vulnerabilities

The inability to take advantage of cloud efficiencies and speed
A loss in productivity for IT teams that must maintain older
systems, as well as employees using these solutions

Solutions and Best Practices:

Although every business is unique in terms of its requirements,
resources, and capabilities, there are strategies and technologies
to help overcome challenges without having to reinvent the
software engineering wheel. Here are three recommendations:

RK®N

9909 7| ‘0Be2IYD ‘0SH# 1S UOSIalar S 8Z¢
00$£0-%59 (ZLg) Wod*uoX4

1- Assessments

In this case, a trusted partner would assess your software
engineering processes — for example, within product
development, quality assurance, and DevOps. The provider would
review existing software documentation, talk with architects and
development leads, perform code reviews, and run code scans
using a static code analysis tool.

The benefits are numerous. Assessments objectively uncover areas
for improvement and categorize issues to fix according to your
business’s needs and risk appetite. You also gain the ability to
create a technical path or roadmap to innovation.

Potential use cases for assessments:

Potential use cases for assessments:

e Pinpoint where a breakdown is occurring. Senior leadership
may see the results of legacy systems and processes but are
not able to identify the root cause. They suspect software
quality is an issue due to product defects, poor app

. performance, user problems with the software, or unstable

=:':::::;:;;.: infrastructure.

e Unusually high development costs. An assessment can
determine if overruns or excessive costs are due, for example,
to inefficient processes or overstaffed or unskilled teams.
Inability to add features. If the engineering team is taking a
long time to add new features to an existing software product,
an assessment can reveal where the problem lies.

RK®N

9909 7| ‘0Be2IYD ‘0SH# 1S UOSIalar S 8Z¢
00$£0-%59 (ZLg) Wod*uoX4

An assessment typically takes two or three weeks and would
include findings and recommendations. The right partner should
prioritize the recommendations and provide estimates as to the
cost and duration to fix.

2 - Automation

While many enterprises have incorporated automation into
software engineering processes, there are opportunities for
greater adoption — and benefits. For example, by reducing the
need for humans to perform repetitive or manual programming
tasks, the organization can accelerate development and reduce
the potential for errors. Automation also frees up IT staff to think
and develop more strategically, and more rapidly scale up new
projects.

Potential use cases for automation:

e Quality assurance testing. There's a significant case to be made
for automating regression testing to ensure any code updates
or changes didn't introduce bugs that can affect the software's
functionality.

e Robotic process automation (RPA). Similar to how it sounds,
RPA is software robotics that uses automation to perform
simple, repetitive tasks and business processes. It mimics
mouse clicks and keyboard taps to automate user actions —
saving valuable time for IT teams.

RK®N

9909 7| ‘0Be2IYD ‘0SH# 1S UOSIalar S 8Z¢
00$£0-%59 (ZLg) Wod*uoX4

Ultimately, different forms of automation can accelerate the
software delivery cycle and optimize processes.

3 - Artificial Intelligence/Machine Learning (Al/ML)

While there may be hype around Al/ML, these technologies are not
part of a fad. There's real business value with the right planning
and execution.

For example, Al/ML solutions can rapidly deliver insights or
summarize data that would otherwise take humans inordinate
amounts of time to obtain. These technologies also improve
communication and collaboration among users who must shape
Al/ML queries and models to ensure the right business outcomes.

Potential use cases for Al/ML:

e Code generation. Some large language models can write code
snippets or even entire applications — however, it's critical that
humans review the model’'s work.

e Bug detection. Rather than manually sifting through volumes
of code, an ML model can rapidly do so to identify defects.
Summarizing text. Al/ML solutions can ingest huge volumes of
documents — such as reports and presentations — read them at
speed, then summarize the highlights.

Adoption rates of Al/ML technologies grow each year. And your
competitors are likely already testing them. But first, understand
the use cases that fit your organization, and then be sure your
teams know how to use these tools.

19909 I ‘0Be2IYD ‘OSH# 1S UOSIayalr S 8¢
00$£0-%59 (ZLg) Wod*uoX4

The Value of An IT
Partner

RKON has helped clients through each of the scenarios
mentioned above and many more situations.
Sometimes issues come up during the due diligence
processes of carve-out and merger transactions.

However, in many cases, our customers come to realize they
cannot modernize or keep pace with business growth with
the software engineering practices they have. They often
encounter incidents when they try to put software into
production, yet are unable to pinpoint the problem.

Our teams have deep expertise and experience across the
software engineering spectrum. For example, we can help
optimize the product development life cycle, improve your
quality assurance program, and implement or streamline your
DevOps operations.

Especially given the ever-more sophisticated cyberthreat
landscape and competitive business market, it's becoming
Imperative to optimize software practices to not only keep
pace but also gain the flexibility to more easily manage
whatever issues arise.

No matter whether your business is grappling with the
ongoing IT skills shortage, struggling to modernize
development processes, or needing to better understand your
software engineering capabilities, RKON is well-positioned to
help.

ABOUT RKON

Founded in 1998 in Chicago, RKON
has grown to become one of the
nation’s leading IT advisory
practices. Our comprehensive
understanding of execution
strategies, technology, business
processes, operations analytics, risk
and compliance, and planning and
integration supports hundreds of
organizations.

Recognizing that no two companies
have the same IT challenges, RKON
takes a truly customized approach.
We serve as trusted advisors to our
customers, providing strategic
guidance, technical resources, and
honest assessments to address
competitive challenges and meet
long-term goals.

coneria

o
N
®
wn
(@]
®
=h
®
0n
e}
>
wn
—
++
N
0
[e)
@
3.
(@]
Q
Q
o
[:
o))
o
o))
o)

=
-3
o
-
Q
o
3

o

\l\/)
o
O]
i
O
¥
S
e

